1. Create a vector of the even whole numbers between 31 and 75.

\[32:2:75\]

2. Let \(x = [2 \ 5 \ 1 \ 6] \).

a. Add 16 to each element

\[x + 16\]

b. Add 3 to just the odd-index elements

\[x(1:2:end) = x(1:2:end) + 3\]

c. Compute the square root of each element

\[\text{sqrt}(x) \text{ or } c = x.^(0.5)\]

d. Compute the square of each element

\[x.^2 \text{ or } d = x.*x\]

3. Let \(x = [3 \ 2 \ 6 \ 8]' \) and \(y = [4 \ 1 \ 3 \ 5]' \) (NB. \(x \) and \(y \) should be column vectors).

a. Add the sum of the elements in \(x \) to \(y \)

\[y + \text{sum}(x)\]

b. Raise each element of \(x \) to the power specified by the corresponding element in \(y \).

\[x.^y\]

c. Divide each element of \(y \) by the corresponding element in \(x \)

\[x./y\]

d. Multiply each element in \(x \) by the corresponding element in \(y \), calling the result "\(z \)".

\[z=x.*y\]

e. Add up the elements in \(z \) and assign the result to a variable called "\(w \)"

\[w = \text{sum}(z)\]
f. Compute $x^*y - w$ and interpret the result

$x^*y - w$ (aynı sonuç)

4. Evaluate the following MATLAB expressions by hand and use MATLAB to check the answers

a. $2 / 2 * 3 = 3$

b. $6 - 2 / 5 + 7 ^ 2 - 1 = 53.6$

c. $10 / 2 \backslash 5 - 3 + 2 * 4 = 6$

d. $3 ^ 2 / 4 = 2.25$

e. $3 ^ 2 ^ 2 = 81$

f. $2 + \text{round}(6 / 9 + 3 * 2) / 2 - 3 = 2.5$

g. $2 + \text{floor}(6 / 9 + 3 * 2) / 2 - 3 = 2$

h. $2 + \text{ceil}(6 / 9 + 3 * 2) / 2 - 3 = 2.5$

5. Create a vector x with the elements,

$$x_n = \frac{(-1)^{n+1}}{2n-1}$$

Add up the elements of the version of this vector that has 100 elements.

```matlab
n = 1:100;
x = (-1).^(n+1) ./ (2*n - 1);
y = sum(x)
```

6. Given $x = [3 \ 1 \ 5 \ 7 \ 9 \ 2 \ 6]$, explain what the following commands "mean" by summarizing the net result of the command.

a. $x(3) = 5$

b. $x(1:7)$

$$3 \ 1 \ 5 \ 7 \ 9 \ 2 \ 6$$

c. $x(1:end)$

$$3 \ 1 \ 5 \ 7 \ 9 \ 2 \ 6$$

d. $x(1:end-1)$

$$3 \ 1 \ 5 \ 7 \ 9 \ 2$$

e. $x(6:-2:1)$

$$2 \ 7 \ 1$$

f. $x([1 \ 6 \ 2 \ 1 \ 1])$

$$3 \ 2 \ 1 \ 3 \ 3$$
g. \(\text{sum}(x) = 33 \)

7. Given the array \(A = [2 \ 4 \ 1 \ ; \ 6 \ 7 \ 2 \ ; \ 3 \ 5 \ 9] \), provide the commands needed to
 a. assign the first row of \(A \) to a vector called \(x1 \)

\[x1 = A(1,:) \]

 b. assign the last 2 rows of \(A \) to an array called \(y \)

\[y = A(\text{end-1:end,:}) \]

 c. compute the sum over the columns of \(A \)

\[c = \text{sum}(A) \]

 d. compute the sum over the rows of \(A \)

\[d = \text{sum}(A,2) \text{ or } d = \text{sum}(A')' \]

 e. compute the standard error of the mean of each column of \(A \) (NB. the standard error of the mean is defined as the standard deviation divided by the square root of the number of elements used to compute the mean.)

\[N = \text{size}(A,1) \]
\[e = \text{std}(A)/\sqrt{N} \]